Adaptive PID Control of DC-link Voltage via DC/DC Buck-Boost Converter

نویسنده

  • Thanana Nuchkrua
چکیده

Thammasat International Journal of Science and Technology, Vol. 18, No. 2, April-June 2013 42 Abstract Mainly, a photovoltaic (PV) system is able to generate wide ranges of voltage and current at terminal output. However, a PV cell is required to functionally maintain a constant direct current (DC) voltage at a desired level during real-time variations of incident light illumination and ambient temperature. To obtain this goal, a power electronic convertor, that is a DC/ DC converter together with control scheme topology, is implemented in this study. However, a conventional linear PID control law is not suitable to be an effective controller for regulating the output voltage of a DC/DC converter due to nonlinearity. An adaptive PID control scheme is proposed to stabilize the output voltage of the DC/DC converter, in order to maintain and stabilize the constant DC-link voltage in power line and load variations. The results of steady state and transient responses show that the performance of the proposed control scheme is more efficient than the conventional PID control scheme. Adaptive PID Control of DC-link Voltage via DC/DC Buck-Boost Converter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Design of a New Single Switch Non-Isolated Buck-Boost dc-dc Converter

In this paper, a new transformerless buck-boost converter based on ZETA converter is introduced. The proposed converter has the ZETA converter advantages such as, buck-boost capability and input to output DC insulation. The suggested converter voltage gain is higher than the classic ZETA converter. In the presented converter, only one main switch is utilized. The proposed converter offers low v...

متن کامل

Digital Controller Designbased on Time Domain for DC-DC Buck Converter

In this paper, the digital controller design for compensating the dc-dc buck converter output voltage has been analyzed in the digital domain. The main idea of this paper is patterning the samples of high order ideal controller and using integral square error in determining digital PID coefficients. This approach provides higher precision of digital controller design and eliminates the need for...

متن کامل

Simulation and Experimental Verification of Closed Loop Operation of Buck / Boost DC-DC Converter with Soft Switching

A major problem in an isolated DC/DC converters operating at high switching frequencies is the attendant switching losses in the semiconductor devices. This can be reduced by introducing either zero-voltage switching (ZVS) or zero-current switching (ZCS) of the semiconductor switches. This paper deals with the simulation, design, fabrication and experimental evaluation of a novel soft-switching...

متن کامل

Study of Fuzzy Logic and Pid Controller in Buck-boost Converter

Various controlling schemes are used in dc-dc converters to control the output voltage, rise time, peak time and settling time of the response. In this paper, fuzzy logic and PID control technique are studied on Buck-Boost converter and the mentioned parameters are analyzed. The model is developed in MATLAB/Simulink.

متن کامل

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014